数据库 - 关系代数与关系运算

数据库原理 专栏收录该内容
30 篇文章 12 订阅

概述
传统的集合运算 (并,差,交,笛卡尔积)
专门的关系运算

并(Union)

R和S
具有相同的目n(即两个关系都有n个属性)
相应的属性取自同一个域

R∪S 
仍为n目关系,由属于R或属于S的元组组成
             R∪S = { t|t  R∨t S }

差(Difference)

R和S
具有相同的目n
相应的属性取自同一个域

R - S 
仍为n目关系,由属于R而不属于S的所有元组组成
                R -S = { t|tR∧tS }

交(Intersection)

R和S
具有相同的目n
相应的属性取自同一个域

R∩S
仍为n目关系,由既属于R又属于S的元组组成
                    R∩S = { t|t  R∧t S }
              R∩S = R –(R-S)

笛卡尔积(Cartesian Product)


R: n目关系,k1个元组
S: m目关系,k2个元组
R×S 
列:(n+m)列元组的集合
元组的前n列是关系R的一个元组
后m列是关系S的一个元组
行:k1×k2个元组
R×S = {tr ts |tr R ∧ tsS }

专门的关系运算

先引入几个记号

(1) R,tR,t[Ai]
         设关系模式为R(A1,A2,…,An)
         它的一个关系设为R
          tR表示t是R的一个元组
          t[Ai]则表示元组t中相应于属性Ai的一个分量 
2A,t[A], AA={Ai1,Ai2,…,Aik},其中Ai1,Ai2,…,Aik是A1,A2,…,An中的一部分,则A称为属性列或属性组。
   t[A]=(t[Ai1],t[Ai2],…,t[Aik])表示元组t在属性列A上诸分量的集合。
   A则表示{A1,A2,…,An}中去掉{Ai1,Ai2,…,Aik}后剩余的属性组。 
3tr ts
    R为n目关系,S为m目关系。
    tr R,tsS, tr ts称为元组的连接。
    tr ts是一个n + m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。 
4)象集Zx
  给定一个关系R(X,Z),X和Z为属性组。
  当t[X]=x时,x在R中的象集(Images Set)为:
               Zx={t[Z]|t R,t[X]=x}
    它表示R中属性组X上值为x的诸元组在Z上分量的集合 

连接

1)连接也称为θ连接
2)连接运算的含义
从两个关系的笛卡尔积中选取属性间满足一定条件的元组
     R         S = {          | tr  R∧ts S∧tr[A]θts[B] }

A和B:分别为R和S上度数相等且可比的属性组
θ:比较运算符 
    连接运算从R和S的广义笛卡尔积R×S中选取(R关系)在A属性组上的值与(S关系)在B属性组上值满足比较关系θ的元组 
3)两类常用连接运算
等值连接(equijoin) 
什么是等值连接
θ为“=”的连接运算称为等值连接 
等值连接的含义
从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:
        R    S = {          | tr R∧ts S∧tr[A] = ts[B] }  
自然连接(Natural join) 
自然连接是一种特殊的等值连接
两个关系中进行比较的分量必须是相同的属性组(同名同域:必须具有相同的属性名,并且出自相同的域集)
在结果中把重复的属性列去掉
自然连接的含义
    R和S具有相同的属性组B
        R   S = {         | tr R∧ts S∧tr[B] = ts[B] }  
一般的连接操作是从行的角度进行运算。
        自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。 
外连接
在做自然连接时,如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。
左外连接
在做自然连接时,如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOINLEFT JOIN)
右外连接
在做自然连接时,如果只把右边关系S中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOINRIGHT JOIN)。 

除(Division)

给定关系R (X,Y) 和S (Y,Z),其中X,Y,Z为属性组。
R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。
R与S的除运算得到一个新的关系P(X),
P是R中满足下列条件的元组在 X 属性列上的投影:
元组在X上分量值x的象集Yx包含S在Y上投影的集合,记作:
       R÷S = {tr [X] | tr  R∧πY (S)  Yx }
       Yx:x在R中的象集,x = tr[X]
在关系R中,A可以取四个值{a1,a2,a3,a4}
    a1的象集为 {(b1,c2),(b2,c3),(b2,c1)}
    a2的象集为 {(b3,c7),(b2,c3)}
    a3的象集为 {(b4,c6)}
    a4的象集为 {(b6,c6)}
S在(B,C)上的投影为
           {(b1,c2),(b2,c1),(b2,c3) }
只有a1的象集包含了S在(B,C)属性组上的投影
     所以     R÷S ={a1} 
  • 0
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值